A LEVEL PHYSICS

WORKED SOLUTIONS

7.2. Gravitational Fields MCQ

1. The distance between the Sun and the Earth is $1.5 \times 10^{11} \mathrm{~m}$ What is the gravitational force exerted on the Sun by the Earth?
A $3.5 \times 10^{22} \mathrm{~N}$
B $\quad 1.7 \times 10^{26} \mathrm{~N}$
C $\quad 5.3 \times 10^{33} \mathrm{~N}$
$\sigma \quad F=\frac{G \mu_{1} \mu_{2}}{r^{2}}$
D $8.9 \times 10^{50} \mathrm{~N}$

$F=3.52 \times 10^{22}$

2. The diagram shows gravitational equipotentials. Adjacent equipotentials are separated by an equal gravitational potential difference V.

Which point has the greatest gravitational field strength?

A \bigcirc

C $\quad 0$
D \bigcirc

R_{1}

3. A planet has radius R and density ρ. The gravitational field strength at the surface is g. What is the gravitational field strength at the surface of a planet of radius $2 R$ and density 2ρ ?

4. The diagram shows equipotential lines for a uniform gravitational field. The lines are separated by 20 m .

An object of mass 4 kg is moved from \mathbf{P} to \mathbf{Q}. Only vertical distance $\therefore 12 \mathrm{~m}$ What is the work done against gravity to move the object?
A 7.2 J
B 7.8 J
 $W=3 \mathrm{~J}$ at 20 m per kg

$W=3 \times 4=12 \mathrm{~J}$ ot 20 m
C 10.2 J
D 36 J
 $w_{12}=12 \times\left(\frac{12}{20}\right)=7.2 \mathrm{~J}$ at 12 m
(Total 1 mark)
5. The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

A potential energy

B mass of the Earth

C magnitude of the gravitational constant

D magnitude of the gravitational field strength

$$
g=-\frac{\Delta V}{\Delta r} \text { (from data book) }
$$

(Total 1 mark)
6. What is the angular speed of a satellite in a geostationary orbit around the Earth?
$\begin{array}{ll}\text { A } & 1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1} \\ \text { B } & 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}\end{array}$
$\omega=\frac{\theta}{t}=\frac{2 \pi}{T}=\frac{2 \pi}{24 \times 60 \times 60}$
$\omega=7.27 \times 10^{-5} \mathrm{rod} \mathrm{s}^{-1}$
C $\quad 4.4 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$
\bigcirc
D $\quad 2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
(Total 1 mark)
7. The graph shows how the gravitational potential varies with distance between two planets, \mathbf{K} and \mathbf{L}, that have the same radius.

A The mass of L is greater than the mass of \mathbf{K}.
B The gravitational field strength at the surface of L is greater than that at the surface of \mathbf{K}. X

C The escape velocity from planet \mathbf{L} is greater than that from planet \mathbf{K}.

D More work must be done to move a mass of 1 kg from the surface of \mathbf{K} to a - distant point, than 1 kg from the surface of \mathbf{L}.

(Total 1 mark)
8. A satellite \mathbf{X} of mass m is in a concentric circular orbit of radius R about a planet of mass M.

What is the kinetic energy of \mathbf{X} ?
$E_{k}=\frac{1}{2} m v^{2}$
A $\frac{G M N}{2 R}$
B $\frac{G M n}{R}$

$$
E_{k}=\frac{1}{2} m\left(\sqrt{\frac{G M}{R}}\right)^{2}
$$

C $\frac{2 G M G n}{R}$
0
$E_{k}=\frac{m G M}{2 R}$
D $\frac{4 G M m}{R}$

0
(Total 1 mark)
9. The distance between the Sun and Mars varies from $2.1 \times 10^{11} \mathrm{~m}$ to $2.5 \times 10^{11} \mathrm{~m}$.

When Mars is closest to the Sun, the force of gravitational attraction between them is F.
What is the force of gravitational attraction between them when they are furthest apart?
A $0.71 F$
0
$F \propto \frac{1}{r^{2}}$
B $0.84 F$
0
C $1.2 F$
0

$$
\begin{aligned}
& F_{1} r_{1}^{2}=F_{2} r_{2}^{2} \\
& F_{2}=F_{1} \cdot \frac{r_{1}^{2}}{r_{2}^{2}}
\end{aligned}
$$

D $1.4 F$
0

$$
\begin{aligned}
& F_{2}=F_{1} \cdot \frac{r_{1}^{2}}{r_{2}^{2}} \\
& F_{2}=F \cdot \frac{2.1^{2}}{2.5^{2}}=0.7056 \mathrm{~F}
\end{aligned}
$$

10. Charon is a moon of Pluto that has a mass equal to $\frac{1}{9}$ that of Pluto.

The distance between the centre of Pluto and the centre of Charon is d.
\mathbf{X} is the point at which the resultant gravitational field due to Pluto and Charon is zero.

What is the distance of \mathbf{X} from the centre of Pluto?
A $\frac{2}{9} d$
0

$$
\begin{gathered}
g=\frac{G M}{R^{2}}-\frac{G m}{r^{2}}=0 \\
M r^{2}=m R^{2} \\
M r^{2}=\frac{M}{q} R^{2}
\end{gathered}
$$

B $\frac{2}{3} d$
0
0
C $\frac{3}{4} d$
D $\frac{8}{9} d$
0
(Total 1 mark)

$$
\begin{aligned}
& r^{2}=\frac{R^{2}}{9} \\
& r=\frac{R}{3}
\end{aligned}
$$

$$
d=r+R
$$

$$
d=\frac{R}{3}+R=\frac{4 R}{3} \leadsto R=x
$$

$$
d=\frac{4 x}{3}
$$

$$
x=\frac{3 d}{4}
$$

11. Which graph shows the relationship between the time period T and the orbital radius r of a planet in orbit around the Sun?

A

12. The diagram shows equipotential lines near a group of asteroids.

Which arrow shows the direction of the gravitational field at \mathbf{X} ?
A \uparrow
Perpendicular to
field line, in
B \downarrow
$C \leftarrow$
 potential gets
D \rightarrow

- direction where
(Total 1 mark)

13. Planet \mathbf{N} has a gravitational potential $-V$ at its surface. Planet \mathbf{M} has double the density and double the radius of planet \mathbf{N}. Both planets are spherical and have uniform density.
What is the gravitational potential at the surface of planet \mathbf{M} ? $m=p \square \rho^{3}$

(Total
14. Satellites \mathbf{N} and \mathbf{F} have the same mass and are in circular orbits about the same planet.

The orbital radius of \mathbf{F} is greater than that of \mathbf{N}.
Which is greater for \mathbf{F} than for \mathbf{N} ?

A gravitational force on the satellite

B angular speed

C kinetic energy

D orbital period
(Total 1 mark)
15. A planet of mass M and radius R rotates so quickly that material at its equator only just remains
on its surface.

What is the period of rotation of the planet?

$$
F=\frac{u v^{2}}{R}
$$

$F=\frac{\mu v^{2}}{R} \quad F=\frac{G m M}{R^{2}}$

A $2 \pi \sqrt{\frac{R}{G M}}$

$\frac{m v^{2}}{R}=\frac{G m M}{R^{2}} \quad v^{2}=\frac{G M}{R}$
$v=\sqrt{\frac{G M}{R}}$

B $2 \pi \sqrt{\frac{G M}{R}}$
0
0

C $2 \pi \sqrt{\frac{R^{3}}{G M}}$
D $2 \pi \sqrt{\frac{G M}{R^{3}}}$

16. What is the angular speed of a satellite in a geostationary orbit around the Earth?
A $1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
0
B $7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
\square
(same or Q.6)
C $4.2 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$
0
D $2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
0
(Total 1 mark)
17.

A	gravitational potential	gravitational field strength	0 B\quad mass
C	gravitational field strength	weight	0
D	weight	gravitational potential	0

(Total 1 mark)
18. An object moves freely at 90° to the direction of a gravitational field.

The acceleration of the object is

A zero. \square
B opposite to the direction of the gravitational field.
C in the direction of the gravitational field. Always

D at 90° to the direction of the gravitational field.
(Total 1 mark)
19. A spacecraft of mass $1.0 \times 10^{6} \mathrm{~kg}$ is in orbit around the Sun at a radius of $1.1 \times 10^{11} \mathrm{~m}$ The spacecraft moves into a new orbit of radius $2.5 \times 10^{11} \mathrm{~m}$ around the Sun.

What is the total change in gravitational potential energy of the spacecraft?
A $-6.76 \times 10^{14} \mathrm{~J}$

B $-3.38 \times 10^{14} \mathrm{~J}$
C $3.38 \times 10^{14} \mathrm{~J}$

D $6.76 \times 10^{14} \mathrm{~J}$
0

$$
\Delta E_{p}=-\operatorname{Gmm}_{\operatorname{m}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \text { (Total } 1 \text { mark) }
$$

$$
\Delta E_{p}=6.67 \times 10^{-11} \times 1.0 \times 10^{6} \times 1.99 \times 10^{30}\left(\frac{1}{1.1 \times 10^{11}}-\frac{1}{2.5 \times 10^{11}}\right)
$$

$$
\Delta E_{p}=6.757 \times 10^{14} \mathrm{~J}
$$

