A LEVEL PHYSICS

WORKED SOLUTIONS

7.2. Gravitational Fields MCQ

D $8.9 \times 10^{50} \text{ N}$

The distance between the Sun and the Earth is 1.5×10^{11} m 1.

What is the gravitational force exerted on the Sun by the Earth?

A
$$3.5 \times 10^{22} \,\text{N}$$

B $1.7 \times 10^{26} \,\text{N}$

C $5.3 \times 10^{33} \,\text{N}$

D $8.9 \times 10^{50} \,\text{N}$

F: $\frac{4 \,\text{M}_1 \,\text{M}_2}{r^2}$

(1.5 \times 10^{34} \times 1.44 \times 10^{30} \times 1.5 \times 10^{34} \times 1.44 \times 10^{30} \times 1.5 \times 10^{30} \times 10^{30} \times 1.5 \times 10^{30} \times 10^{30

Which point has the greatest gravitational field strength?

- A 0
- B Field liver are closest together
- c o
- D O

(Total 1 mark)

A planet has radius R and density ρ . The gravitational field strength at the surface is g.

What is the gravitational field strength at the surface of a planet of radius 2R and density 2ρ ?

- **A** 2g
- u=pV mapR

B 4g

C

- g: Gm
- 8 x/sR
- g «pR

D 16g

8*g*

- 0
- 32 91 P2 R2
- $g \frac{2\rho 2R}{\rho R} =$
 - (Total 1 mark)
- The diagram shows equipotential lines for a uniform gravitational field. The lines are separated by 20 m.

gravitational potential

Only vertical distance : 12 m An object of mass 4 kg is moved from **P** to **Q**.

What is the work done against gravity to move the object?

- W= 3 J at 20 m per kg 7.2 J
- W: 3 x 4 : 12 J & 20 m 7.8 J
- $W_{12} = 12 \times \left(\frac{12}{20}\right) = 7.27 \text{ d} 12 \text{ m}$ 10.2 J
- D 36 J

(Total 1 mark)

The graph shows how the gravitational potential V varies with the vertical distance d from the 5. surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

Α potential energy 0

В mass of the Earth 0

C magnitude of the gravitational constant

- D magnitude of the gravitational field strength

g = - $\frac{\Delta V}{\Delta E}$ (from data book)

6. What is the angular speed of a satellite in a geostationary orbit around the Earth?

- **A** $1.2 \times 10^{-5} \text{ rad s}^{-1}$
- 0
- $\omega = \frac{0}{L} = \frac{2\pi}{7} = \frac{2\pi}{24 \times 60 \times 60}$

B $7.3 \times 10^{-5} \text{ rad s}^{-1}$

D

- ω: 7.27 x10 md 51

C $4.4 \times 10^{-3} \text{ rad s}^{-1}$

 $2.6 \times 10^{-1} \text{ rad s}^{-1}$

0

(Total 1 mark)

7. The graph shows how the gravitational potential varies with distance between two planets, **K** and **L**, that have the same radius.

Which statement is correct?

- A The mass of L is greater than the mass of K.
- X

- 0
- B The gravitational field strength at the surface of **L** is greater than that at the surface of **K**.
- 0
- ${f C}$ The escape velocity from planet ${f L}$ is greater than that from planet ${f K}$.
- 0
- More work must be done to move a mass of 1 kg from the surface of K to a
 distant point, than 1 kg from the surface of L.

A satellite **X** of mass m is in a concentric circular orbit of radius R about a planet of mass M.

What is the kinetic energy of X?

$$\mathbf{A} \quad \frac{GMm}{2R}$$

$$\mathsf{B} \quad \frac{GMm}{R}$$

$$c = \frac{2GMm}{R}$$

D
$$\frac{4GMm}{D}$$

$$E_{k} = \frac{1}{2} M \left(\sqrt{\frac{GM}{R}} \right)^{2}$$

$$E_{\mathbf{k}} = \frac{\mathbf{m} \, \mathbf{k} \, \mathbf{M}}{2 \, \mathbf{R}}$$

(Total 1 mark)

9.

The distance between the Sun and Mars varies from 2.1×10^{11} m to 2.5×10^{11} m. When Mars is closest to the Sun, the force of gravitational attraction between them is F.

What is the force of gravitational attraction between them when they are furthest apart?

A 0.71*F*

- F~ T

B 0.84*F*

0

C 1.2*F*

- 0
- F1 (2 = F2 12)

D 1.4*F*

0

$$F_2 = F_1 \cdot \frac{r^2}{r^2}$$

$$F_2 = F \cdot \frac{2.1^2}{2.5^2} = 0.7056 F$$

Charon is a moon of Pluto that has a mass equal to $\frac{1}{0}$ that of Pluto.

The distance between the centre of Pluto and the centre of Charon is d.

X is the point at which the resultant gravitational field due to Pluto and Charon is zero.

What is the distance of X from the centre of Pluto?

$$\mathbf{A} = \frac{2}{9}d$$

$$q = \frac{GM}{R^2} - \frac{Gm}{\Gamma^2} = 0$$

$$B = \frac{2}{3}d$$

$$\frac{c}{4}$$

$$\Gamma^2 = \frac{R^2}{9}$$

$$r = \frac{R}{3}$$

$$\lambda = \frac{R}{3} + R = \frac{4R}{3} \stackrel{\longleftarrow}{\sim} R = X$$

$$X = \frac{3d}{4}$$

Which graph shows the relationship between the time period T and the orbital radius r of a planet in orbit around the Sun?

The diagram shows equipotential lines near a group of asteroids.

Which arrow shows the direction of the gravitational field at X?

0

Perpendicular to field line, in direction where potential gets

(Total 1 mark)

Planet **N** has a gravitational potential -V at its surface. Planet **M** has double the density and 13. double the radius of planet N. Both planets are spherical and have uniform density.

What is the gravitational potential at the surface of planet **M**?

A
$$-16V$$

$$\frac{V_1 r_1}{M_1} = \frac{V_2 r_2}{M_2}$$

$$-V.1.2 \times 2^{3} = -V.1$$

-0.2V

$$V_{2} = V_{1} \cdot \frac{\Gamma_{1}}{\Gamma_{2}} \cdot \frac{M_{2}}{M_{1}} = -V_{1} \cdot \frac{1}{2} \cdot \frac{2 \times 2^{3}}{1 \times 1^{3}} = -V_{2} \cdot \frac{1}{2}$$

(Total

Satellites **N** and **F** have the same mass and are in circular orbits about the same planet. The orbital radius of **F** is greater than that of **N**.

Which is greater for **F** than for **N**?

- Α gravitational force on the satellite
- В angular speed
- C kinetic energy
- D orbital period

(Total 1 mark)

What is the period of rotation of the planet?

$$A \quad 2\pi \sqrt{\frac{R}{GM}}$$

$$v^2 = \frac{GM}{R}$$

B
$$2\pi\sqrt{\frac{GM}{R}}$$

$$\sqrt{\frac{2}{R}} \frac{dr}{R}$$

$$\frac{\mathbf{C}}{\mathbf{C}} = 2\pi \sqrt{\frac{R^3}{GM}}$$

$$\frac{1}{2\pi R} = 2\pi R / \frac{R}{GM}$$

D
$$2\pi\sqrt{\frac{GM}{R^3}}$$

$$= 2\pi \sqrt{\frac{R^3}{6M}}$$
(Total 1 mark)

What is the angular speed of a satellite in a geostationary orbit around the Earth? 16.

- $1.2 \times 10^{-5} \, \text{rad s}^{-1}$
- $7.3 \times 10^{-5} \, \text{rad s}^{-1}$
- (Same as Q6)

- $4.2 \times 10^{-3} \, \text{rad s}^{-1}$
- $2.6 \times 10^{-1} \text{ rad s}^{-1}$
- 0

Which row shows two scalar quantities?

Α	gravitational potential	gravitational field strength	0
В	mass	gravitational potential	
С	gravitational field strength	weight	0
D	weight	gravitational potential	0

(Total 1 mark)

18.

An object moves freely at 90° to the direction of a gravitational field.

The acceleration of the object is

A zero.

0

B opposite to the direction of the gravitational field.

- **C** in the direction of the gravitational field.
- Always

0

D at 90° to the direction of the gravitational field.

(Total 1 mark)

19.

A spacecraft of mass 1.0×10^6 kg is in orbit around the Sun at a radius of 1.1×10^{11} m. The spacecraft moves into a new orbit of radius 2.5×10^{11} m around the Sun.

What is the total change in gravitational potential energy of the spacecraft?

A $-6.76 \times 10^{14} \text{ J}$

- 0
- =p = Gm M

B $-3.38 \times 10^{14} \text{ J}$

0

C $3.38 \times 10^{14} \, \text{J}$

- 0
- ΔEp = Δ (GmM)

D $6.76 \times 10^{14} \,\mathrm{J}$

 $\Delta E_p = -G_{\text{th}} M \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$ (Total 1 mark)

 $\Delta E_{p} = 6.67 \times 10^{11} \times 1.0 \times 10^{1} \times 1.44 \times 10^{30} \left(\frac{1}{1 \cdot 1 \times 10^{11}} - \frac{1}{2.5 \times 10^{11}} \right)$